Data collection: CAD-4 diffractometer software (Enraf-Nonius, 1977). Cell refinement: CAD-4 diffractometer software. Data reduction: local program. Program(s) used to solve structure: *MULTAN80* (Main *et al.*, 1980). Program(s) used to refine structure: *SHELX76* (Sheldrick, 1976). Molecular graphics: *ORTEP* (Johnson, 1965).

We would like to thank Dr J.-P. Astier [Centre de Recherches sur les Mécanismes de la Croissance Cristalline (CRMC2), Université d'Aix-Marseille III, Campus Luminy, France] for valuable technical assistance.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1159). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Aldoshin, S. M. (1994). Mol. Cryst. Liq. Cryst. 246, 207-214.
- Chu, N. Y. C. (1990). Photochromism: Molecules and Systems, edited by H. Durr & H. Bouas-Laurent, ch. 10, pp. 493–509. Amsterdam: Elsevier.
- Clegg, W., Norman, N. C., Flood, T., Sallans, L., Kwak, W. S., Kwiatkowski, P. L. & Lasch, J. G. (1991). Acta Cryst. C47, 817– 824.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Laréginie, P., Samat, A. & Guglielmetti, R. (1993). French Patent, 93/13 731.
- Laréginie, P., Samat, A. & Guglielmetti, R. (1995). *Heterocycl.* Commun. In the press.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Millini, R., Del Piero, G., Allegrini, P., Crisci, L. & Malatesta, V. (1991). Acta Cryst. C47, 2567–2569.
- Rickwood, M., Marsden, S. D., Ormsby, M. E., Staunton, A. L., Wood, D. W., Hepworth, J. P. & Gabbutt, C. D. (1994). *Mol. Cryst. Liq. Cryst.* 246, 17–24.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Tardieu, P., Dubest, R., Aubard, J., Kellmann, A., Tfibel, F., Samat, A. & Guglielmetti, R. (1992). *Helv. Chim. Acta*, **75**, 1185–1197.

Acta Cryst. (1995). C51, 1617-1619

8-Methylspiro(*syn*-10,11-benzo-8azatricyclo[5.2.2.0^{1,5}]undec-10-ene)-9,3'-[3*H*]naphth[1,2-*b*][1,4]oxazine

Gérard Pèpe

CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille CEDEX 9, France

PIERRE LARÉGINIE, ANDRÉ SAMAT AND ROBERT GUGLIELMETTI

Laboratoire de Chimie Organique, Faculté des Sciences de Luminy, GCOBO, URA CNRS 1320, 163 Avenue de Luminy, 13288 Marseille CEDEX 2, France

ELENA ZABALLOS

Universitat de Valencia, Facultate de Farmacia, Ave Vicent Andrès Estellès, 46100 Burjassot, Valencia, Spain

(Received 7 October 1994; accepted 3 January 1995)

Abstract

The title compound, $C_{26}H_{24}N_2O$, is of interest in the study of the effects of steric hindrance on photochromic properties.

Comment

In the field of organic photochromic compounds, spiro-[indoline-naphthoxazines], (1) (Chu, 1990), have been studied extensively for several years because of their good photochromic properties (Tardieu *et al.*, 1992; Rickwood *et al.*, 1994). In order to study the effect of the heterocyclic part, H, on the photochromic characteristics, we recently synthesized (Laréginie, Samat & Guglielmetti, 1995) and studied the threedimensional structure (Reboul *et al.*, 1995) of a spiro-[azabicyclonaphthoxazine], (2). To extend this preliminary work and to develop the correlation between the

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Crystallographica Section C ISSN 0108-2701 ©1995 substitution and the expected properties, the molecular geometry of the title compound, (3), has been established.

It is interesting to note the C16-O21 distance, the length of which increases from 1.467 (7) Å in compound (2) to 1.501 (3) Å in compound (3). Another geometry modification around the spiro C atom is observed: the length of the bond C16-N14 is 1.437(3) compared with 1.1475 (7) Å for compound (2). As described in the previous paper (Reboul et al., 1995), we tried to correlate the photochromic properties to the oxazinic ring planarity. The distance sum of the atoms to the mean plane of the ring is 0.93 Å, with a χ^2 value of 5870. Effectively, compound (3) presents better photochromic colourability than the reference compound of the series (spiro[indoline-naphthoxazine]), for which the χ^2 test value is greater (7761). The photochromic properties of (3) are similar to those of the previously analysed compound (Reboul et al., 1995), which has a corresponding χ^2 value of 6241.

Fig. 1. ORTEPII drawing (Johnson, 1976) of the molecule of the title compound with displacement ellipsoids of 50% probability.

Experimental

The synthesis of the title compound will be described elswhere (Laréginie, Samat & Guglielmetti, 1995). Crystals suitable for X-ray analysis were obtained by recrystallization from heptane solution. The density D_m was measured by flotation.

Crystal data

$C_{26}H_{24}N_2O$	Cu $K\alpha$ radiation
$M_r = 380.5$	$\lambda = 1.5418$ Å
Monoclinic	Cell parameters from 25
$P2_1/a$	reflections
a = 14.078(3) Å	$\theta = 15-45^{\circ}$
b = 9.473 (2) Å	$\mu = 0.579 \text{ mm}^{-1}$
c = 14.899(3) Å	T = 293 K
$\beta = 79.51$ (3)°	Square platelet

$$V = 1953.7 (4) Å^3$$
 $0.5 \times 0.3 \times 0.2 \text{ mm}$ $Z = 4$ Colourless $D_x = 1.29 \text{ Mg m}^{-3}$ Colourless $D_m = 1.30 (2) \text{ Mg m}^{-3}$ $\theta_{max} = 45^{\circ}$ $Data collection$ $\theta_{max} = 45^{\circ}$ Nonius CAD-4 diffractometer $h = -15 \rightarrow 15$ θ scans $k = 0 \rightarrow 10$ Absorption correction: $l = 0 \rightarrow 15$ none 4 standard reflections 4324 measured reflectionsfrequency: 60 min 3918 observed reflections $[l > 3\sigma(l)]$ RefinementRefinementRefinement $\Delta\rho_{max} = 0.22 \text{ e } Å^{-3}$ $MR = 0.0442$ $\Delta\rho_{min} = -0.23 \text{ e } Å^{-3}$ $S = 0.71$ Extinction correction: none 3918 reflectionsAtomic scattering factors 334 parametersH atoms refined with $U_{iso} =$ $0.05 Å^2$ $V_{iso} =$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

2.2B)

Unit weights applied

C1--C' (1974, Vol. IV, Table

$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$						
	x	y	z	Bea		
C1	0.6343 (1)	-0.1429 (2)	0.1002(1)	2.14 (6)		
C2	0.6365(1)	-0.2520(2)	0.0389(1)	2.89(7)		
C3	0.5826(1)	-0.3727 (2)	0.0643 (1)	3.70 (8)		
C4	0.5256(1)	-0.3827 (2)	0.1503 (2)	3.56 (9)		
C5	0.5218(1)	-0.2726 (2)	0.2125(1)	2.68 (7)		
C6	0.5777 (1)	-0.1534 (2)	0.1879(1)	2.08 (5)		
C7	0.5832(1)	-0.0204(2)	0.2443 (1)	2.12 (5)		
C8	0.5360(1)	-0.0312 (2)	0.3454 (1)	2.83 (7)		
C9	0.6117 (2)	-0.1144 (2)	0.3894 (1)	3.88 (9)		
C10	0.7090(1)	-0.0982 (2)	0.3243 (1)	3.47 (8)		
C11	0.6920(1)	0.0077 (2)	0.2504 (1)	2.66 (7)		
C12	0.7573 (1)	-0.0032 (2)	0.1566 (1)	2.79 (7)		
C13	0.6900(1)	-0.0082 (2)	0.0847 (1)	2.35 (6)		
N14	0.6257 (1)	0.1154 (1)	0.1053 (1)	2.31 (5)		
C15	0.5946 (2)	0.1838 (2)	0.0263 (1)	3.49 (8)		
C16	0.5521 (1)	0.1024 (2)	0.1855 (1)	2.38 (6)		
C17	0.5320(1)	0.2411 (2)	0.2356(1)	2.64 (7)		
N18	0.4526(1)	0.2769 (1)	0.2857 (1)	2.68 (5)		
C19	0.3766 (1)	0.1793 (2)	0.2892 (1)	2.08 (5)		
C20	0.3790(1)	0.0785 (2)	0.2232 (1)	1.96 (5)		
O21	0.4592 (1)	0.0594 (1)	0.1573 (1)	2.29 (4)		
C22	0.2993 (1)	-0.0083 (2)	0.2171 (1)	2.39 (6)		
C23	0.2183 (1)	0.0049 (2)	0.2836(1)	2.91 (7)		
C24	0.2134 (1)	0.1016 (2)	0.3570(1)	2.72 (6)		
C25	0.2941 (1)	0.1916 (2)	0.3594 (1)	2.39 (6)		
C26	0.2886(1)	0.2894 (2)	0.4325 (1)	3.22 (7)		
C27	0.2071 (2)	0.2949 (3)	0.4985(1)	4.47 (9)		
C28	0.1279 (2)	0.2072 (3)	0.4962 (1)	4.55 (9)		
C29	0.1299(1)	0.1128 (2)	0.4276(1)	3.78 (9)		

Table 2. Selected geometric parameters (Å, °)

2	1.376 (3)	C16—N14	1.437 (3)
5	1.405 (3)	C16-C17	1.512 (3)
13	1.493 (3)	C16-021	1.501 (3)
3	1.386 (3)	C17—N18	1.272 (3)
1	1.386 (3)	C19	1.408 (3)
5	1.390 (3)	C19-C20	1.367 (3)

C5-C6	1.387 (3)	C19—C25	1.419 (3)
C6C7	1.524 (3)	C20-021	1.367 (3)
C7—C8	1.535 (3)	C20-C22	1.407 (3)
C8—C9	1.562 (3)	C22—C23	1.373 (3)
С10—С9	1.535 (3)	C23-C24	1.419 (3)
C10-C11	1.540 (3)	C24—C25	1.426 (3)
C11—C7	1.573 (3)	C24—C29	1.432 (3)
C11-C12	1.530 (3)	C25-C26	1.421 (3)
C12-C13	1.555 (3)	C26C27	1.369 (4)
C13—N14	1.478 (3)	C27—C28	1,396 (4)
C15-N14	1.478 (3)	C28—C29	1.354 (4)
C16—C7	1.566 (3)		
C2-C1-C6	120.3 (5)	C7—C16—N14	107.2 (4)
C13—C1—C6	113.4 (4)	C7—C16—O21	107.6 (4)
C1—C2—C3	119.6 (5)	C17—C16—C7	114.6 (4)
C2-C3-C4	120.3 (5)	C17—C16—N14	112.2 (4)
C3-C4-C5	120.7 (6)	C17-C16-O21	106.2 (4)
C4—C5—C6	118.9 (5)	N14-C16-O21	108.9 (4)
C5—C6—C7	127.6 (5)	C16-C17-N18	125.9 (5)
C1-C6C5	120.1 (5)	C17-N18-C19	115.3 (4)
C1-C6-C7	112.2 (4)	C20-C19-N18	120.9 (5)
C6C7C8	115.4 (4)	C20-C19-C25	119.8 (5)
C11—C7—C6	108.6 (4)	C25—C19—N18	119.2 (4)
C11—C7—C8	101.9 (4)	C19-C20-O21	121.2 (5)
C11—C7—C16	106.3 (4)	C19—C20—C22	122.6 (5)
C16—C7—C6	105.0 (4)	C22-C20-O21	116.1 (4)
C16—C7—C8	118.9 (4)	C16-021-C20	114.3 (4)
C7—C8—C9	103.8 (4)	C20-C22-C23	117.9 (5)
C10-C9-C8	106.4 (5)	C22-C23-C24	122.2 (5)
С11—С10—С9	106.3 (4)	C23-C24-C25	118.6 (5)
C10—C11—C7	102.2 (4)	C23-C24-C29	122.2 (5)
C10-C11-C12	117.6 (4)	C25-C24-C29	119.3 (5)
C12C11C7	111.4 (4)	C19-C25-C24	118.8 (5)
C11—C12—C13	106.9 (4)	C19-C25-C26	122.8 (5)
C12-C13-N14	105.1 (4)	C24—C25—C26	118.5 (5)
CI-C13-C12	106.7 (4)	C25-C26-C27	119.8 (5)
C1—C13—N14	111.1 (4)	C26-C27-C28	121.9 (7)
C13—N14—C15	116.2 (4)	C27-C28-C29	120.3 (7)
C13—N14—C16	115.2 (4)	C24-C29-C28	120.3 (5)
C15-N14-C16	115.2 (4)		(0)

Data collection: CAD-4 diffractometer software (Enraf-Nonius, 1977). Cell refinement: CAD-4 diffractometer software. Data reduction: local program. Program(s) used to solve structure: *MULTAN80* (Main *et al.*, 1980). Program(s) used to refine structure: *SHELX76* (Sheldrick, 1976). Molecular graphics: *ORTEP*II (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and bond distances involving H atoms have been deposited with the IUCr (Reference: PA1155). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Chu, N. Y. C. (1990). Photochromism: Molecules and Systems, edited by H. Durr & H. Bouas-Laurent, ch. 10, pp. 493–509. Amsterdam: Elsevier.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Laréginie, P., Samat, A. & Guglielmetti, R. (1995). *Heterocycl.* Commun. In the press.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Reoul, J.-P., Samat, A., Laréginie, P., Lokshin, V., Guglielmetti, R. & Pèpe, G. (1995). Acta Cryst. C51, 1614–1617.

- 1619
- Rickwood, M., Marsden, S. D., Ormsby, M. E., Staunton, A. L., Wood, D. W., Hepworth, J. P. & Gabbutt, C. D. (1994). *Mol. Cryst. Liq. Cryst.* 246, 17–24.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Tardieu, P., Dubest, R., Aubard, J., Kellmann, A., Tfibel, F., Samat, A. & Guglielmetti, R. (1992). *Helv. Chim. Acta*, **75**, 1185–1197.

Acta Cryst. (1995). C51, 1619-1621

Thiodicarb

HERMAN L. AMMON

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, MD 20742, USA

ROBERT J. SEYMOUR, WARD M. HUFFMAN AND THERMISTOLLES D. J. D'SILVA

Rhone-Poulenc AG Co., PO Box 12014, 2 T. W. Alexander Dr., Research Triangle Park, North Carolina, NC 27709, USA

(Received 23 June 1994; accepted 16 January 1995)

Abstract

Dimethyl N,N'-[thiobis(methyliminocarbonyloxy)]bis-(ethanimidothiolate), $C_{10}H_{18}N_4O_4S_3$, is an example of a sulfenylated biscarbamate insecticide. The molecule has an approximate twofold axis through the central S atom which joins the two methyliminocarbonyloxyethanimidothiolate units. One of the two arms is planar in the crystal. Semi-empirical geometry optimization for an isolated molecule favors a model with both arms planar and, thus, crystal packing may be responsible for the observed non-planarity in one arm. Bond lengths and angles have similar values to those of the 'monomeric' carbamate insecticide methomyl.

Comment

The title compound, (I), is an example of a sulfenylated biscarbamate insecticide (D'Silva, 1985). Thiodicarb acts as a toxocant by cholinesterase inhibition and is used on many crops to control lepidopterous and other pests. It is related to the carbamate insecticide methomyl, (II), with an S atom linking two methomyl units *via* the carbamate N atoms. Both geometric isomers [(E) and (Z)] of (II) are known. Methomyl consists of the (Z) isomer shown (D'Silva, 1971; Waite & Sim, 1971; Takusagawa & Jacobson, 1977), but the technical grade may contain traces of the (E) isomer